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Abstract
Vermiculated spinefoot, Siganus vermiculatus is one of the fastest 
growing and commercially important siganid species occurring in 
Indian waters. Stock discrimination of vermiculated spinefoot was 
carried out along the south Konkan coast of Maharashtra by using truss 
morphometry. The present investigation was based on a study of 66 
individuals collected from Harnai, Ratnagiri and Malvan locations of the 
South Konkan coast of Maharashtra. A 14-point truss network with 26 
truss variables was studied. Truss morphometry showed significant 
differences in II (4-5), MM (5-6), NN (5-10), OO (5-11), SS (6-10), TT (6-11), 
XX (10-11), YY (11-12) and ZZ (12-14) distances from the three sampling 
locations in 26 truss morphometric measurements thereby indicating 
phenotypic heterogeneity among populations of Siganus vermiculatus 
from the south Konkan coast at a small spatial resolution.
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Introduction

The Siganids, commonly known as rabbit fish or spinefoot 
are medium sized, herbivorous fishes belonging to the family 
Siganidae. They comprised 13 species belonging to the genus 
Siganus (Fischer and Bianchi, 1984). Siganids are distributed 
in reefs, sea grasses, mangroves and estuaries of tropical 
and subtropical coastal environment (Woodland, 1997). 
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Siganus canaliculatus, S. javus, S. lineatus, S. stellatus 
and S. vermiculatus are impor tant spinefoot species 
found in India (Anand and Reddy, 2012). S. canaliculatus, 
S. vermiculatus and S. javus commonly occur along the 
Ratnagiri coast. Siganids resemble each other in most of 
the features. They are identified by their deep, compressed 
body, snout resembling that of a rabbit , 13 strong spines 
in the dorsal fin, 7 spines in the anal fin, and 2 spines in 
the ventral fin. The skin is leathery, and the scales are 
smooth, small and closely adherent. The fishes are often 
mistaken as without scales. The colour is olive- green to 
brown depending on the species (Herre and Montalban, 
1928; Munro, 1967).

Siganids are ideal candidate species for aquaculture 
because of their rapid growth, herbivorous feeding habits, 
commercial value and tasty flesh (Lam, 1974). Vermiculated 
spinefoot , S. vermiculatus is one of the fastest-growing 
siganid species (Anuraj et al., 2021) and has been gaining 
commercial importance owing to its meat quality and high 
market potential (Kitche-Arreglado et al., 2013). The species 
is the most estuary-dependent of all siganids (Woodland, 
1990). It is listed as least concern and monitoring of harvest 
levels as well as other potential threats is recommended 
(The IUCN Red List of Threatened Species, ISSN 2307-8235 
(online) IUCN 2011 T196436A2457345). The stock structure 
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analysis encompassing stock identification and population 
discrimination of a particular species plays a vital role in 
scientific resource management and stock enhancement 
programs (Shaklee and Bentzen, 1998). The information 
is necessary to obtain to achieve sustainable yield, avoid 
recruitment failures, rebuild the overfished stocks, and 
conserve threatened and endangered species. Morphological 
characteristics, such as body shape and meristic counts, 
have long been used to delineate stocks (Heincke, 1898), and 
continue to be used successfully (Villaluz and Maccrimmon, 
1988; Haddon and Willis, 1995; Silva, 2003). Morphometric 
differences among stocks of a species are important for 
evaluating the population structure and as the basis for 
identifying stocks (Ihssen et al., 1981; Turan, 2004). The 
morphometric analysis provides information on phenotypical 
stocks, equivalent growth groups, mortality rates and 
reproductive rates (Booke, 1981).

The Truss Network System is for morphometric measurements 
(Strauss and Bookstein, 1982; Strauss, 1985; Cardin and 
Friedland, 1999) and consists of a series of distances 
calculated between landmarks that form a regular pattern 
of connected quadrilaterals or cells across the body form 
(Strauss and Bookstein, 1982). The truss network system is 
a landmark-based technique of geometric morphometrics, 
which has no restriction on the direction of variation and 
localization of shape changes and is very effective in capturing 
information about the shape of an organism (Cavalcanti et al., 
1999). The landmarks chosen are homologous, representing 
the identical developmental feature among specimens, and 
are easily located anatomically (Winans, 1985; Bookstein, 
1990 and Cadrin, 2005). Truss Network Analysis is being 
increasingly used for the purpose of stock identification 
and discrimination. Studies on stock discrimination of 
various species by using truss morphometry have been 
variously reported by authors including Gopikrishna et al. 
(2006) for Lates calcarifer, Pawase (2010) for Lactarius 
lactarius, Swatipriyanka et al. (2011) for Decapterus russeli, 
Sajina et al. (2011) for Megalaspsis cordyla, Gorospe and 
Demayo (2013) for Siganus guttatus, Remya et al. (2014) 
for Rastrelliger kanagurta, Pawar et al. (2011); Hakim et al. 
(2019) for Nemipterus japonicus, Pazhymodon et al. (2015) 
for Harpodon nehereus, Rawat et al. (2019) for Eubleekeria 
splendens, Ahamad et al. (2003), etc.

In India, the brackish water fisheries are data deficient and 
are plagued with complex challenges attributed to habitat 
degradation, overexploitation, stock depletion, illegal fishing 
and climate change. Delineating the stocks of S. vermiculatus 
from the south Konkan coast of Maharashtra based on truss 
morphometry will pave the way for formulating management 
plans for the species in the future.

Material and methods
The study was carried out in two coastal districts of 
Maharashtra namely Ratnagiri and Sindhudurg representing 
the south Konkan coast . Geographically the study area 
is located between 17° 02’ 43’’ E latitude and 73° 16’ 57’’ E 
longitudes to 15° 43’ 46’’ E latitude and 73° 40’ 37’’ E longitudes 
(Fig. 1). The south Konkan coast has a coastline of 281 km 
and a continental shelf area of 52000 km2. Sampling was 
carried out from three landing centres, viz., Harnai, Ratnagiri, 
and Malvan of south Konkan, which are situated along the 
Anjarle, Mirya, and Sarjekot estuaries.

Fig. 1. Location of sample collaction points

Sample collection

A total of 66 specimens of S. vermiculatus ranging in size 
from 14.7 cm to 24.4 cm constituted the sample size for the 
study. Twenty-two samples were collected from each landing 
centre. The samples comprised of pooled individuals. No sexual 
dimorphism was observed in the collected individuals. The 
individuals were placed in an insulated ice box and brought 
to the laboratory. The samples were cleaned thoroughly 
in running water to remove the slime or dirt and stored 
temporarily in the freezer at –20 °C. The frozen samples were 
thawed adequately before further analysis.

Digitization of samples

Each fish was placed on a thick graph paper on its left 
side and assigned a specific code for identification. Digital 
photographs of each specimen were taken with Sony 
Cybershot DSC- W810 Point- and -shoot camera (image 
resolution 20.1 megapixels) (Fig. 2). Images of S. vermiculatus 
were digitized in CorelDraw (2021) version 23.0.0.363 software 
by dividing the individual image into six equal columns 
with the help of grid scale. Digitized images were used to 
record the landmarks.
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Fig. 2. S. vermiculatus on a flat platform with graph paper labelled with a 
specific code

Fig. 3. Truss Network of S. vermiculatus

Fig 4. Truss morphometric differences among stocks, a) Ratnagiri –Harnai,  
b) Ratnagiri – Malvan stocks, c) Harnai -Malvan stocks

Extracting truss morphometric

The landmarks used for extracting truss measurements 
from the body are given in (Fig. 4). The truss network was 
developed by interconnecting 14 landmarks leading to 26 
truss measurements from each individual (Fig. 3). The truss 
morphometric data was extracted from each digitized image 
of the specimen by a combination of three softwares viz., 
tpsUtil V1.69 (Rohlf, 2015), tpsDig2 V2.26 (Rohlf, 2015) and 
Paleontological statistics (PAST) (Hammer et al., 2001).

All the images were first converted from JPEG (*. jpeg) to TPS 
(*. tps) format by using a utility program called tpsUtil V1.69 
(Rohlf, 2015) and ordered into a single file. The input of the 
image in tps format is a prerequisite for the tpsDig2 programme 
to analyse and extract the morphometric data. The landmarks 
were digitized on the image using the ‘digitized landmark’ mode 
of the software, and the landmark data was encrypted into the 
tps files X-Y coordinates. The data-encrypted tps format image 
files were used as an input in the PAST. The data on distances 

between the landmarks were extracted using the ‘all distances 
from landmark’ and ‘2-dimensional’ options of the ‘Geomet’ menu.

Statistical analysis of truss 
morphometry data

Multivariate analysis of variance (MANOVA) and classification 
accuracy were used in the statistical analysis of truss 
morphometric data. Prior to MANOVA, the data were standardized 
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by transforming each measurement to a proportion of the total 
length of the individual to remove the bias of size differences and 
make inter-landmark measurements directly comparable among 
individuals (Canty et al., 2018). MANOVA was performed for 26 truss 
morphometric measurements to test the significant differences at 
different locations using SAS ver. 9.3. The classification accuracy 
was evaluated based on a percentage of individuals correctly 
assigned to the original sampling location and then calculating 
the proportion of correctly allocated individuals.

Results

Truss morphometry data

Multivariate analysis of variance: A total of 14 landmarks 
to get 26 standardized data morphometric measurements 
have been used for truss network analysis in the present 

study. Twenty- six standardized data truss morphometric 
measurements and their column-wise description are given 
in Table 1. Wilk’s Lambda and Pillai’s Trace showed a p-value 
of less than 0.05, demonstrating a difference between the 
locations. Among the truss morphometric measurements, the 
nine measurements i.e. II (4-5), MM (5-6), NN (5- 148 10), OO 
(5-11), SS (6-10), TT (6-11), XX (10-11), YY (11-12) and ZZ (12-14) 
were significantly different (p < 0.05) from the three sampling 
locations. However, the 17 other truss morphometric traits were 
not significantly different (P < 0.05) among the stocks at three 
sampling locations. The comparison between Ratnagiri and 
Harnai populations showed a significant difference (p<0.05) 
in the seven truss morphometric measurements, namely II 
(4-5), YY (11-12), SS (6-10), ZZ (12-14), OO (5-11), TT (6-11) and 
XX (10- 11) (Fig. 4a). The comparison between Ratnagiri and 
Malvan populations showed a significant difference (p<0.05) 
in the five truss morphometric measurements, namely II (4-5),  

Table 1. MANOVA for standardized data on truss morphometric measurements (different superscripts indicate significant differences based on MANOVA followed by Tukey’s HSD test; p <0.05)

Sampling locations MANOVA

No Landmarks Distance Harnai Ratnagiri Malvan Wilks’ Lambda Pillai’s Trace

Mean
F
ratio

p- value
F
ratio

p- value

1 1-2 AA 0.247a 0.241a 0.246a

2 1-3 BB 0.402a 0.402a 0.402a

3 1-14 CC 0.218a 0.221a 0.219a

4 2-3 DD 0.175a 0.177a 0.176a

5 2-14 EE 0.319a 0.315a 0.317a

6 3-4 FF 0.171a 0.169a 0.171a

7 3-12 GG 0.438a 0.431a 0.433a

8 3-14 HH 0.398a 0.399a 0.398a

9 4-5 II 0.193a 0.188b 0.192c

10 4-11 JJ 0.363a 0.369a 0.363a

11 4-12 KK 0.391a 0.387a 0.389a

12 4-14 LL 0.482a 0.486a 0.484a

13 5-6 MM 0.179a 0.18b 0.176c

14 5-10 NN 0.255b 0.249a 0.246b 3.147 < 0.05 3.096 < 0.05

15 5-11 OO 0.234b 0.248b 0.236a

16 5-12 PP 0.346a 0.35a 0.345a

17 6-7 QQ 0.176a 0.179a 0.177a

18 6-9 RR 0.241a 0.235a 0.232a

19 6-10 SS 0.135a 0.125b 0.136c

20 6-11 TT 0.244a 0.251b 0.256c

21 7-9 UU 0.217a 0.221a 0.214a

22 7-10 VV 0.245a 0.246a 0.252a

23 9-10 WW 0.173a 0.173a 0.172a

24 10-11 XX 0.176a 0.182b 0.179c

25 11-12 YY 0.183a 0.179b 0.182c
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in four truss morphometric measurements, namely MM  
(5-6), NN (5-10), TT (6-11) and XX (10-11). Distance M (5-6) 
represents the upper part of the caudal peduncle. NN 
(5-10) represents the caudal region, TT (6-11) represents 
the region between the caudal peduncle and the middle 
of the anal fin, and XX (10-11) represents the lower part of 
the caudal peduncle. Stocks are historically discriminated 
based on phenotypic variation in life-history, meristic, 
morphometric and life-history traits. These characteristics 
are quantitative genetic traits controlled by many genes 
and affected by the environment in which those genes are 
expressed (Falconer, 1981; Hard, 1995). They are also related 
to fitness and moulded by natural selection, reflecting local 
adaptation (Carvalho, 1993; Hard, 1995; Conover, 1998). Thus, 
phenotypic differences observed in certain areas (truss 
distances) may reflect genetic differentiation, environmental 
differences or a combination of the two (Thompson, 1991). 
It would be difficult to pinpoint which of these factors is 
responsible for the differences found in the present study, 
given a general lack of information in this regard.

Differences in morphometric characters might be related 
to several environmental variables which influence the fish 
morphology, including diet (Wimberger, 1992; Tonn et al., 1994; 
Olsson et al., 2006; Cadrin et al., 2014), water temperature 
(Lõhmus et al., 2010), predation pressure Scharnweber et al., 
2013), habitat structure (Willis et al., 2005), depth (Mwanja 
et al., 2011) and water currents (Franssen et al., 2013). Local 
hydrology can also be a driving force of morphometric 
differences as variations in environmental and behavioural 
factors can be reflected in changes in body forms and 
shapes (Webb, 1984). The causes of truss morphological 
variations across locations are sometimes difficult to explain, 
although it is widely known that morphometric characters 
may respond to environmental circumstances with a high 
degree of plasticity (Wimberger, 1992). For example, ecological 
interactions such as competition for food, space, and shelter, 
predation pressure, and hydrobiological factors such as water 
temperature and salinity (Rawat et al., 2019). Ecological and 
evolutionary processes cause changes in the morphological 
characteristics of the fish population. Variation in populations 
refers to differences in behavioural, morphology, or life cycle 
characteristics, and it is most often observed in vertebrate 
populations (Robinson and Wilson, 1994; Wimberger, 1994; 
Smith and Skulason, 1996).

In the present study, the populations of S. vermiculatus 
were sampled from the three locations at an approximate 
distance of 198 km from each other. It is unlikely that 
ecological interactions and hydrobiological parameters 
factors, including temperature and salinity, differ significantly 
within this limited range. The results thus prove the efficiency 

YY (11-12), SS (6-10), ZZ (12-14) and MM (5-6) (Fig. 4b). The 
comparison between Harnai and Malvan populations showed 
a significant difference (p<0.05) in four truss morphometric 
measurements namely MM (5-6), NN (5-10), TT (6-11) and XX 
(10- 11) (Fig. 4c).

Classification accuracy

The results of group classification of individuals of Harnai, 
Ratnagiri and Malvan showed that 95.45%, 90.91% and 95.45% 
respectively were correctly classified.

Discussion

Truss morphometry data

Multivariate analysis of variance: Winans (1987) 
discovered that almost all of the morphometric characters 
sampled from finfish from the 1960s to the 1980s were based 
on those selected by Hubbs and Lagler (1947), which were 
primarily longitudinally oriented and were focused mainly 
on the head and tail regions of the fishes. As an alternative, 
Strauss and Bookstein (1982) proposed a technique of 
obtaining linear distances across the body surface of fish by 
creating a box-truss network between landmarks covering 
the entire body. Several researchers compared the overall 
performance of traditionally measured finfish dimensions 
to such box-truss distances and have observed that trussed 
data resulted in more accurate classification of individuals 
(Strauss and Bookstein, 1982; Winans, 1987; Schweigert , 
1990; Roby et al., 1991). The Ratnagiri: Harnai populations 
differ significantly (p<0.05) in seven measurements namely 
II (4-5), YY (11-12), SS (6-10), ZZ (12-14), OO (5-11), TT (6- 11) 
and XX (10-11). II (4-5) and YY (11-12) represent the entire 
dorsal and ventral sections of the body adjacent to the 
caudal peduncle. Distance SS (6-10) represent the end of 
the caudal peduncle. ZZ (12-14) represents the ventral part 
of the body nearer to the snout. OO (5-11) represents the 
vertical distance on the posterior side of the body. TT (6-11) 
represents the region between the caudal peduncle and the 
middle of the anal fin, and XX (10-11) represents the lower 
part of the caudal peduncle. Comparisons between Ratnagiri 
and Malvan populations showed significant differences 
(p<0.05) in the five truss measurements namely II (4-5), YY 
(11-12), SS (6-10), ZZ (12-14) and MM (5-6). II (4- 5) and YY 
(11-12) represented the entire dorsal and ventral section of 
the body nearer to the caudal peduncle. Briefly, distances 
SS (6-10) represent the end of the caudal peduncle. ZZ 
(12-14) represents the ventral part of the body nearer to 
the snout , and MM (5-6) represents the upper part of 
the caudal peduncle. Comparisons between Harnai and 
Malvan populations showed significant differences (p<0.05) 
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or robustness of truss morphometrics in discriminating 
populations at small spatial scales and short geographic 
distributional ranges. The applicability and efficiency of truss 
analysis in delineating fish populations at a smaller spatial 
scale are in agreement with Canty et al. (2018).

Classification accuracy

The classification accuracies for Harnai, Ratnagiri, and Malvan 
were 95.45%, 90.91%, and 95.45%, respectively. The high 
percentage of the wrong classifications in the present study 
was from the Ratnagiri location. The percentages of correct 
classification recorded were highest in the Harne and Malvan 
stock. In a way, this further validates the usefulness of truss 
morphometrics in stock discrimination.

Conclusion

Truss morphometry has been proven to be an accurate and 
robust tool for discriminating stocks at a shorter spatial 
scale as evidenced in the present study. This tool can inform 
evidence-based management of fishery resources thereby 
achieving sustainable fisheries. However, the genetic variation 
among the stocks of Siganus vermiculatus can also be 
examined using molecular genetic techniques such as 
mitochondrial DNA analysis.
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